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Abstract

In this paper, I want to deal with the triviality threat to computationalism. On 
one hand, the controversial and vague claim that cognition involves 
computation is still denied. On the other, contemporary physicists and 
philosophers alike claim that all physical processes are indeed computational 
or algorithmic. This claim would justify the computationalism claim by 
making it utterly trivial. I will show that even if these two claims were true, 
computationalism would not have to be trivial.

First, I analyze the vague definition of computationalism. By showing how it 
depends on what we mean by “a computational process”, I distinguish two 
main flavors of computationalism claim:

1.      That cognitive processes could be described algorithmically (in G. 
Chaitin's sense of “algorithmic”)

2.      That cognitive processes are algorithmic or computational (they 
implement recursive functions).

This second claim could be analyzed further as a claim:

1.       That cognitive processes could be described as computational

2.       That cognitive processes are really implemented computationally

3.       That cognitive processes are generated by computational processes.

I distinguish then three varieties of computationalism. The first is that 
cognitive processes can be simulated computationally; the second is that they 
can be realized computationally; the third is that cognitive processes are 
generated by overall computational processes. This last sense is on the verge 
of being trivial if we accept that all physical processes are computational.



2
I show that the non-trivial computationalism involves a multi-level model of 
cognition where certain level of organization of processes is emergent on the 
base level. This base level could be even conceived of as algorithmic but the 
emergent computational level would implement other algorithms than the 
base level. I try to sketch a multi-level model of cognition which involves 
computation without being at the same time trivial.
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IS COMPUTATIONALISM TRIVIAL?
In this paper, I want to deal with the triviality threat to computationalism 

in cognitive science. On the one hand, the controversial and vague claim that 
cognition  essentially  involves  computation  is  still  denied  as  false  or 
explanatory vacuous (see for example Searle 1992). On the other hand, many 
contemporary  physicists  and  philosophers  alike  accept  universal  
computationalism  (known also as  pancomputationalism) – a claim that  all 
physical processes are indeed computational or algorithmic ( Wolfram 2002, 
Fredkin  2005,  Lloyd  2000,  Ng 2001,  Chaitin 2005, and in the context  of 
evolutionary theory Dennett 1995). Universal computationalism would easily 
justify mental computationalism by making it utterly trivial. I will show that 
even  if  all  processes  are  computational  and  cognition  is  essentially  a 
computational  process,  a version of computationalism in cognitive science 
and philosophy of mind would not have to be trivial.

I will not argue for nor against universal computationalism because such 
arguments would require a separate analysis of the concepts in question (for a 
critical discussion of pancomputationalism see for example Piccinini 2007). 
For the sake of argument, I will assume that some variety of it could be true, 
and see if it makes mental computationalism completely trivial. The result of 
my analysis is a taxonomy of possible computationalisms, some of which are 
weak and trivial, and some of them more robust and non-trivial.

1. What is mental computationalism?

The current usage of “computationalism” is broad and vague. However, 
all versions of mental computationalism1 are committed to a claim:

MC) Cognitive processes involve computational processes.

MC could be accepted probably even by Searle 1992 if “involve” is taken 
here to mean a very weak association relation. There are varieties of mental 

1 For the sake of brevity, I restrict myself here to cognitive computationalisms 
which do not have to imply a claim that all mental processes (for example, 
emotional or experiential) are also computational. Such hybrid views seem 
however to be endorsed so they should be accounted for in a full taxonomy of 
computationalisms.
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computationalism which would be acceptable even for vehement critics of 
the stronger versions of it. I will discuss below three ways to make “involve” 
more precise.2

The  second  vague  term  here  is  “a  computational  process”  or  “an 
algorithmic  process”.  It  could  be  understood  in  at  least  two  ways,  so  I 
distinguish two main flavors of the computationalism claim:

1. That cognitive processes could be described algorithmically (in G. 
Chaitin's sense of “algorithmic”, see Chaitin 1975), i.e. they expose non-
stochastic regularity which could be accounted for in some compression 
algorithm.

2. That cognitive processes are algorithmic or computational, i.e. they 
implement recursive functions3 or realize computations.

The first flavor of computationalism is a very weak claim that cognitive 
processes could be described in a scientific theory offering laws (they could 
be much less strict than physical-mental laws denied by D. Davidson in his 
anomalous monism, see Davidson 1970). I will focus on a second version 
which  seems more  controversial.  This  one  could  be broken  down further 
according to the meanings “involve” could have in the original (MC) claim:

1. Cognitive processes could be described as computational.

2. Cognitive processes are really implemented computationally.

2 A similar formulation is to be found in Chrisley 2000, but Chrisley uses “is” 
instead of “involve”.

3 I am using the notion of recursive functions to define the class of computable 
functions. This is of course an application of Church/Turing thesis. However, my 
arguments would also hold if I had used a more neutral formulation with a phrase 
“... described in terms of the ideal formal computation theory”. Such a move is 
recommended by Chrisley 2000 as a general defense of computationalism claim. 
For my purposes, it is not required because I take for granted that universal 
computationalism has already been defended, and that mental computationalism is 
understood on today's theoretical grounds because this is exactly what generates 
the triviality threat. But the universal computationalism in my analysis is exactly 
transparent in Chrisley's sense: I point only to a possible ideal version of it, and 
ignore current details.
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3. Cognitive processes are generated by computational processes.

These three versions are derived from three possible senses of what an 
algorithmic process involves: 

1) It is a process described in terms of recursive functions (descriptive-
algorithmic).

2) It is a process implemented by recursive functions (realization-
algorithmic).

3) It is process caused by a process (2) in some physical device 
(derivative-algorithmic).

The  first  claims  that  cognitive  processes  can  be  simulated 
computationally.  This  is  a  variety  that  involves  the  popular  “computer-
metaphor” talk. John Searle would not mind endorsing it, as it is quite weak 
and does not imply that simulated processes are also intentional or conscious. 
Note that every finite sequence of discrete values is descriptive-algorithmic 
( Cutland 1980, 122), so if the world is describable by such a finite sequence, 
it is descriptive-algorithmic, but it is only a trivial definitional implication. 
This kind of universal computationalism is very weak.

The second claim is that cognitive processes are realized computationally. 
This is a classical sense of computationalism in cognitive sciences. I will get 
into  necessary  details  of  realization  later  because  on  weak  renderings  of 
realization, critics of computationalism are tempted to bold suggestions that 
anything  at  all  computes  every  possible  computable  function  under  some 
description. I argue that realization of algorithms should be defined not only 
in  terms  of  discrete  states  of  physical  causal  processes  but  of  a  whole 
interconnected architecture, and that it is not true that any interpretation goes.

The third  variety  is  a  claim that  cognitive  processes  are  generated  by 
universal computational processes. This last sense is on the verge of being 
trivial if all physical processes are computational. But as I argue later, this is 
not  the  case  for  certain  models  of  cognition which stay robust  even  in  a 
purely digital world.

2. What is realization of algorithms?

A classical account of realization implies that its sufficient and necessary 
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condition  is  that  there  is  a  correspondence  relation  between  states  of  the 
program and states of the physical system (see for example Chalmers 1996, 
318). The weaker account has it that there should be correspondence between 
input and output states of the program and of the physical system but such a 
notion  of  realization  seems to  conflate  mere  algorithmic  description  with 
causal implementation.4 The more robust accounts demand that there should 
be some structure in between: internal states mediating input/output states. 
For  example,  Jerry  Fodor  requires  additionally  semantic  proof-theoretic 
relations to obtain:

Every computational system is a complex system which changes physical 
state in some way determined by physical laws. It is feasible to think of a 
system as a computer just insofar as it is possible to devise some mapping 
which pairs physical states of the device with the formulae in the 
computing language in such a fashion as to preserve desired semantic 
relations among the formulae. For example, we may assign physical states 
of the machine to sentences in the language in such a way that if S1,…, 
Sn are machine states, and if F1, …, Fn-1, Fn are sentences paired with 
S1, …., Sn-1, Sn, respectively, then the physical constitution of the 
machine is such that it will actually run through the sequence of states 
only if F1,…, Fn-1 constitutes a proof of Fn. ( Fodor 1975, 73)

This definition of  realization is  too broad and too narrow at  the same 
time. Not all  programming languages are supposed to be used in a proof-
theoretic  fashion  and  only  some  logical  systems  have  expressibility 
equivalent  to  the  Universal  Turing  Machine.  We  might  also  add  some 
additional conditions to the specification of a computing language required in 
this definition, and specifying such a condition can be quite straightforward 
because  this   computing language  should have expressibility  equal  to  the 
Universal Turing Machine. This is also a reason why it is more intuitive to 
directly define required relations between the states of the physical  system 
using Turing machines or other equivalent computation models. Moreover, it 
is not at all clear if the stipulation of the semantic relations to hold between 
states of the machine is supposed to exclude all non-symbolic machines, and 
which machines are taken to be non-symbolic, because Fodor has argued that 

4 The reduction of notion of realization to interpretation in both Searle 1992 and 
Putnam 1988 seems close to such a conflation.
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even subsymbolic connectionist networks are symbolic or representational in 
his sense ( Fodor & Pylyshyn 1988).

The  other  problem  is  that  the  correspondence  is  rendered  as  a  weak 
condition.  Hilary  Putnam  has  notoriously  claimed  he  “proved”  that  any 
object realizes any computation ( Putnam 1988). Similar objection is to be 
found in Searle:

The same principle that underlies multiple realizability would seem to 
imply universal realizability. If computation is defined in terms of the 
assignment of syntax, then everything would be a digital computer, 
because any object whatever could have syntactical ascriptions made to it. 
You could describe anything in terms of 0's and 1's…. For any program 
and any sufficiently complex object, there is some description of the 
object under which it is implementing the program. Thus for example the 
wall behind my back is right now implementing the Wordstar program, 
because there is some pattern of molecule movements that is isomorphic 
with the formal structure of Wordstar. ( Searle 1992, 207-208)

David Chalmers in his discussion of this problem admits that some 
computations will be implemented by every system – for example, single 
element, single-state combinatorial-state automata – but this does not mean 
that every computation is implemented by anything Chalmers 1996, 319). In 
some ways, one could see objections raised by Putnam and Searle as based 
on the principle that any ascription of functional properties, especially of 
formal mathematical properties, is interpretation-based. Would both authors 
argue also that no objective measurement of physical quantities is possible 
because measurement scales are interpretation-based? They seem to treat all 
numerical ascriptions (not only of 0's and 1's) as a matter of interpretation, 
not as a matter of fact. But at the same time they don't seem to question the 
validity of all measurements in natural sciences (for a similar objection, see 
McDermott 2001, 171).

How could one escape such consequences? They would make also digital 
physics trivial, not only mental computationalism, and they would eventually 
undermine all uses of mathematics in natural sciences as interpretation-based 
(or rather interpretation-biased). 

First of all, one must require that the syntactical ascriptions to physical 
objects  be  consistent.  All  physical  changes  in  Searle's  wall  should  be 
isomorphic to changes in a Wordstar program executed on a PC from the 
beginning of execution until its end: we wouldn't be likely much impressed 
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by a correspondence to a halted Wordstar program looping infinitely.

Mere descriptions do not implement any non-trivial functions (at most, 
they could be said to compute constant functions) if they are causally inert. 
This is a common requirement that a whole causal  structure of a physical 
process is as complex as the formal description of the algorithm ( Chalmers 
1994, 392). It has been however argued that mere causal complexity is not a 
sufficient  condition  (  Scheutz  2001):  to  wit,  the  relation  of  states  of  the 
program  being  executed  to  the  physical  states  cannot  be  sufficiently 
described with isomorphism which is only defined for functions. So some 
other  relation  (like  bisimilarity  postulated  by  Scheutz)  is  required  for  a 
physical  object  to  implement  computations.  I  would  therefore  reject  the 
notion of state-to-state correspondence as too weak.

One other requirement  is  that  computational  relations should obtain in 
machines which are relatively easy to single out from the environment. While 
there may be a long causal chain which eventually links the internal states of 
the machine to some distal events, not all causally connected pairs of states of 
a  physical  system  and  its  environment  should  be  viewed  as  parts  of  the 
computing machinery (even if one accepts so-called wide computationalism, 
Wilson  1994,  or  active  externalism,  Clark  &  Chalmers  1998).  Thus  the 
system  realizing  computations  should  be  relatively  isolated  from  its 
environment so that its computational states could be easily singled out. This 
condition  is  that  the  boundaries  of  the  computational  system  should  be 
spelled  out  not  in  purely  computational  terms.  On  a  physical  level,  it  is 
extremely  hard  to  demarcate  boundaries  of  Searle's  computing  wall,  in 
contrast to the boundaries of a standard PC sitting under my desk, which is a 
system which can be delineated from the environment using physical  and 
functional  descriptions  (flow  of  electricity  in  the  cables  etc.).5 The  same 
objection applies to Putnam's arbitrary disjunctions of physical states which 
do not form a relatively closed system (see Putnam 1988, 95, for  a good 
discussion see Scheutz 1998).6

For this reasons, I define realization as follows:

5 I'm using an informal and intuitive description instead of a formal definition for 
the sake of brevity. It should be noted that it is complexity of physical relations 
between the states of a system (which is larger than the complexity of physical 
relations between the system and its external environment) that underlies the very 
notion of isolation used here. Nevertheless, a precise definition is not needed for 
my purposes here.

6 The precise formulation of this requirement is however out of the scope of this 
article.
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An algorithm A is realized in a system S iff there is an descriptive 
algorithmic sequence A' (a sequence having a description in terms of 
recursive functions) encoded in a physical medium that in connection 
with a physical device D causes some derivative algorithmic processes A'' 
which in turn generate descriptive algorithmic sequences A'''. The 
encoding must fulfill the requirement of bisimilarity (or similar relation)7 

but is not necessarily discrete, and the system S must be relatively isolated 
from its environment.

Note that the notion of realization as used in digital physics is compatible 
with  the  above  definition:  The  cellular  automata  are  relatively  isolated 
systems and they are supposed to implement only a strictly defined set of 
computations in a given moment. But of course it is a matter of fact if the 
fundamental physical level is essentially realizing computations in the above 
sense (this might turn out very hard to show).8 So while a full definition of 
realization might seem wordy, it is the price we pay for not accepting Searle's 
and Putnam's interpretation-only variety of universal computationalism, and 
at the same time we are not bound to say that all universal computationalism 
is false by definitional fiat.

The  stronger  universal  computationalism  makes  however  the  claim 
“cognition is realized by a computation of an algorithm” trivial. Is  there a 
way to make it more substantial?

3. A multi-level model

A non-trivial computationalism involves a multi-level model of cognition 
where certain levels of organization of processes are emergent on the base 
level. This base level could be even conceived of as algorithmic ( Wolfram 
2002)  but  the  emergent  computational  level  would  implement  other 
algorithms than the base level.

There  are  many  notions  of  emergence  in  use.  I  accept  here  William 
Wimsatt's  concept  of  emergence  as  non-aggregativity,  where  aggregative 

7 I don't want to argue for or against any such relation here. I think it is sufficient to 
point to the kind of relations that would fulfill the task. In this respect, my account 
is committed to Chrisley's transparent computationalism.

8 It is not so important for my discussion if describing the fundamental physical 
level in terms of cellular automata is viable.
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properties are defined by four conditions:

(1) a condition on the intersubstitution or rearrangement of parts; (2) a 
condition on size scaling (primarily, though not exclusively, for 
quantitative properties) with addition or subtraction of parts; (3) a 
condition on invariance under the decomposition and reaggregation of 
parts; and (4) a linearity condition that there be no cooperative or 
inhibitory interactions among parts in the production or realization of the 
system property. ( Wimsatt 2000)

Wimsatt also defines the critical notion of the organization level: Levels 
are  local  maxima  of  regularity  and  predictability  in  the  phase  space  of 
alternative  modes  of  organization  of  matter  (  Wimsatt  1994).9 Individual 
levels singled out below are emergent in this very sense.

In  a  multi-level  model  of  cognition,  not  all  processes,  nor  all 
computational  processes,  could  count  as  cognitive  processes.  It  seems 
plausible that a multi-level model of a cognitive system comprises at least the 
following levels:

• Physical and chemical (including quantum level)
• Neurobiological
• Computational
• Representational
• Environmental/Adaptive
• Experiential/Conscious.

A strong multi-level variety of computationalism would be committed to 
a hypothesis:

Every cognition is realized by recursive functions which implement 
algorithms on the internal information processing level of cognitive 
systems.

So,  cognition  involves  computation  in  the  sense  that  there  is  a  special 
computational level realizing special cognitive computations, but even when 
all  physical  processes  are  digital  and  computational,  the  emergent  higher 
levels  of  organization  implement  other  algorithms  than  the  base  physical 

9 This definition fits my overall strategy to link ways we individuate entities with 
complexity.
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level.  The  computational  level  would  involve,  as  in  traditional  cognitive 
science,  perceptual  data  processing,  memory  retrieval  etc.,  but  its 
computations  would  be  implemented  by  lower  level  processes  or 
computations. Thus it is not trivial that there is any computational level in 
cognitive systems.

The crucial point here is that the claims about computational nature stop 
being trivial when computation is construed of not as a formal relation but 
rather  as the existence  of a real-world implementation of a computational 
architecture in the cognitive system ( Sloman 1997). It is interaction of sub-
states that makes computation possible. Complex systems such as cognitive 
systems have architectural  complexity that is best described using multiple 
levels.  The  exact  specification  of  such  an  architecture  is  not  a  matter  of 
conceptual  analysis  but  rather  of a  modeling which has  to  be empirically 
valid. It may as well turn out that there is a distinct computational level in the 
architecture,  or  a  whole  architecture  may  turn  out  computational.  This 
remains a matter of fact, and not of armchair analysis.

4. Summary

Let me review possible versions of computationalism and point at these, 
which seem free from the triviality threat:

• Weak  Regularity  Computationalism:  Cognitive  processes  can  be 
described as non-stochastic.
• Weak  Simulation  Computationalism:  Cognitive  processes  can  be 
simulated as recursive functions.
• Weak Implementation Computationalism: Cognitive processes can be 
implemented as recursive functions.
• Strong Simulation Computationalism: Cognitive processes are actually 
simulated (e.g. in animals) as recursive functions.
• Strong  Implementation  Computationalism:  Cognitive  processes  are 
actually implemented as recursive functions.
• Weak Multi-Level  Computationalism:  Cognitive processes  could be 
described  as  recursive  functions  on  some  level  of  organization  of 
cognitive systems.
• Strong  Multi-Level  Computationalism:  Cognitive  processes  are 
implemented  by  recursive  function  on  some  level  of  organization  of 
cognitive systems.
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Only the Strong Multi-Level Computationalism is non-trivial if some robust 
variety of universal computationalism is true.

The question  arises  whether  this  computationalism claim is  empirical, 
metaphysical  (conceptual)  or  simply heuristic  for  cognitive  scientists.  The 
computationalism  claim  is  usually  ascribed  various  statuses:  empirical, 
heuristic, or conceptual. In its purely trivial versions, it is conceptual.  In its 
non-trivial  versions,  it  is  also  empirical,  and  could  play  a  heuristic role. 
Computational  systems  are  not  only  systems  with  some  interpretation 
ascribed  intentionally.  Their  computational  structure  is  as  real  as  any 
functional structure.

Universal  computationalism  could  make  single-level  mental 
computationalism true but trivial. For multi-level computionalism, it is both 
empirical and conceptual question whether all or some cognitive systems are 
or could be computational on one of their levels. The hypothesis of the strong 
multi-level computationalism seems however to be empirical as there are no 
real conceptual problems with cognitive systems realizing computations, all 
criticisms notwithstanding.
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